On vector bundle manifolds with spherically symmetric metrics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the first eigenvalue of spherically symmetric manifolds

We give lower and upper bounds for the first eigenvalue of geodesic balls in spherically symmetric manifolds. These lower and upper bounds are C0-dependent on the metric coefficients. It gives better lower bounds for the first eigenvalue of spherical caps than those from Betz-Camera-Gzyl. Mathematics Subject Classification: (2000):35P15, 58C40.

متن کامل

Hermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds

In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermi...

متن کامل

On Lorentzian two-Symmetric Manifolds of Dimension-fou‎r

‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.

متن کامل

Two and Three parametric regular generalizations of spherically symmetric and axially symmetric metrics

Regular generalizations of spherically and axially symmetric metrics and their properties are considered. Newton gravity law generalizations are reduced for null geodesics. PACS numbers: 04.20.-q, 04.20.Jb

متن کامل

Spherically Symmetric Dynamical Horizons

We study spherically symmetric dynamical horizons (SSDH) in spherically symmetric Einstein/matter spacetimes. We first determine sufficient and necessary conditions for an initial data set for the gravitational and matter fields to satisfy the dynamical horizon condition in the spacetime development. The constraint equations reduce to a single second order linear “master” equation, which leads ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2016

ISSN: 0232-704X,1572-9060

DOI: 10.1007/s10455-016-9528-y